Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Matthew D. Jones, Filipe A.
Almeida Paz, John E. Davies, Brian F. G. Johnson* and Jacek Klinowski

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England

Correspondence e-mail: bfgj1@cam.ac.uk

Key indicators
Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in solvent or counterion
R factor $=0.036$
$w R$ factor $=0.075$
Data-to-parameter ratio $=21.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-Bis[(S)-(-)-2-aminomethyl-1-ethyl-pyrrolidine- $\kappa^{2} N$]palladium(II) dichloride methanol trisolvate

The crystal structure of the title compound, $\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{Cl}_{2} \cdot 3 \mathrm{CH}_{3} \mathrm{OH}$, has been determined at $180(2) \mathrm{K}$ in the non-centrosymmetric space group $P 2_{1} 2_{2} 2_{1}$. The structure contains only one crystallographically unique Pd metal centre, showing a slightly distorted square-planar geometry, in which the two chiral (S)-(-)-2-aminomethyl-1ethylpyrrolidine diamines are coordinated with a trans configuration in order to minimize the steric interaction between neighbouring substituent ethyl groups. $\left[\operatorname{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{~N}_{2}\right)_{2}\right]^{2+}$ complex cations are strongly hydrogenbonded to the Cl^{-}anions and methanol molecules, forming supramolecular tapes running along the a axis.

Comment

Asymmetric catalysis, defined as the ability to form one enantiomer selectively in preference to the other in the presence of an appropiate catalyst, is one of the most important advances in modern industrial chemistry. To date, the majority of organic ligands used in asymmetric catalysts with late transition metals have been based on phosphines, with only a very few reports of N -donor ligands bound to Rh or Pd metal centres (Noyori, 2002; Fache et al., 2000; Tommasino et al., 1999). We have recently explored the use of diamines, which can lead to chiral catalysts with direct applications in asymmetric hydrogenation processes (Jones, Raja et al., 2003; Jones, Almeida Paz et al., 2003a,b; Rouzaud et al., 2003).

Attempts to synthesize Pd-based catalysts have used $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right]$ as the Pd precursor, in which the weakly bound benzonitrile ligands could easily be displaced by diamines (denoted $\mathrm{N}-\mathrm{N}$) in the presence of a suitable solvent (e.g. $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to form the neutral catalytic species $\left[\mathrm{PdCl}_{2}(\mathrm{~N}-\right.$ N)] (Sauthier et al., 2000; Newman et al., 1999; Satake et al., 1999). Surprisingly, when the chiral diamine ligand (S)-(-)-2-aminomethyl-1-ethylpyrrolidine (amepd) was used (see Scheme), it displaced not only the PhCN species but also the Cl ligands, forming a $\left[\mathrm{Pd}(\text { amepd })_{2}\right]^{2+}$ cationic palladium complex as its solvated chloride salt, (I), the crystal structure of which we report here.

The complete displacement of all ligands from the $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right]$ starting material by $(S)-(-)$-2-aminomethyl-

Received 6 October 2003
Accepted 13 October 2003
Online 23 October 2003

1-ethylpyrrolidine might, in theory, lead to two possible isomers, cis and trans. However, only one isomer is observed in (I), with the two coordinated diamine molecules having equivalent N-donor atoms trans to each other (Fig. 1). The trans arrangement is presumably preferred to the cis arrangement because it minimizes the steric repulsion between the ethyl substituent groups from adjacent coordinated diamines (Fig. 1).

As has been observed for related complexes, the Pd metal centre in (I) (with an electron count of 16) is found in a slightly distorted square-planar geometry (Fig. 1), the $\mathrm{Pd}-\mathrm{N}$ and $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ distances and angles being consistent with those found in the literature (Table 1; Bruno et al., 2002; Albinati et al., 1991).

Classical strong $(\mathrm{N}-\mathrm{H} \cdots \mathrm{O})$ and very strong $\left(X-\mathrm{H} \cdots \mathrm{Cl}^{-}\right.$, where X is N or O) cooperative hydrogen bonds in (I) link together neighbouring $\left[\operatorname{Pd}(\operatorname{amepd})_{2}\right]^{2+}$ complexes (Table 2), leading to the formation of an $R_{7}^{4}(18)$ graph-set motif (Fig. 2), which alternates in a zigzag fashion along the a axis of the unit cell (Fig. 3), leading to the formation of hydrogen-bonded supramolecular tapes of (I). Individual tapes, related by the 2_{1} screw axis, pack in an $[A B A B \ldots]$ fashion along the b axis (two layers per unit-cell repeat; Fig. 4).

Experimental

All chemicals were purchased from Aldrich and used without further purification. Solvents were dried and degassed using appropriate methods. Standard Schlenk line techniques were also employed. $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right](140 \mathrm{mg}, 0.036 \mathrm{mmol})$ was dissolved in tetrahydrofuran (ca 10 ml), followed by the addition of (S)-(-)-2-aminomethyl-1-ethylpyrrolidine ($0.05 \mathrm{ml}, 0.36 \mathrm{mmol}$). The resulting solution was stirred at ambient temperature for 1 h . A white precipitate was filtered, washed with diethyl ether $(2 \times c a 20 \mathrm{ml})$ and dried in vacuo to give a white microcrystalline powder. Crystals of (I) suitable for X-ray diffraction analysis were obtained by recrystallization from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$ solution (5:1:1). Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{PdCl}_{2}$: C 38.80, H 7.39, N 12.93%; found: C 37.56 , H 7.28,

Figure 1
A view of the $\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{~N}_{2}\right)_{2}\right]^{2+}$ complex cation in (I), showing the labelling scheme for all non-H atoms. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres. The Cl^{-}anions and the methanol molecules have been omitted for clarity.

Figure 2
A view of the $R_{7}^{4}(18)$ graph-set motif formed by the hydrogen bonds linking neighbouring $\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{~N}_{2}\right)_{2}\right]^{2+}$ complex cations. For hydrogenbond details see Table 2. H atoms have been omitted for clarity.

N 12.31%. Spectroscopic analysis: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, \delta$, p.p.m. $): 1.64$ $(t, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.85-2.30\left(m, \mathrm{CH}_{2}, 4 \mathrm{H}\right), 2.65-3.65\left(m, \mathrm{NCH}, \mathrm{NCH}_{2}\right.$, $7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$, δ, p.p.m.): $12.3\left(\mathrm{CH}_{3}\right)$, $22.1\left(\mathrm{CH}_{2}\right), 23.5$ $\left(\mathrm{CH}_{2}\right), 53.8\left(\mathrm{NCH}_{2}\right), 59.4\left(\mathrm{NCH}_{2}\right), 69.5(\mathrm{NCH})$; positive $\mathrm{ESI}=181$ ($M^{2+}, 100 \%$).

Figure 3
The supramolecular tape of (I) formed by the zigzag alternation of the $R_{7}^{4}(18)$ graph-set motif along the a axis of the unit cell. H atoms have been omitted for clarity.

Figure 4
Perspective view of (I) along the a axis. Hydrogen bonds $(\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $X-\mathrm{H} \cdots \mathrm{Cl}^{-}$, where X is N or O) are drawn as blue dashed lines (see Table 2 for hydrogen-bonding geometry). H atoms have been omitted for clarity.

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{Cl}_{2} \cdot 3 \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=529.86$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.3092$ (1) \AA 。
$b=12.9075$ (2) \AA
$c=26.3277$ (6) \AA
$V=2483.85(8) \AA^{3}$
$Z=4$
$D_{x}=1.417 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius Kappa CCD area-detector diffractometer
Thin-slice ω and φ scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.843, T_{\max }=0.906$
14487 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.075$
$S=1.01$
5324 reflections
243 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation

Cell parameters from 14842 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=0.99 \mathrm{~mm}^{-1}$
$T=180$ (2) K
Block, yellow
$0.23 \times 0.10 \times 0.10 \mathrm{~mm}$

> 5324 independent reflections
> 4721 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.046$
> $\theta_{\max }=27.5^{\circ}$
> $h=-9 \rightarrow 9$
> $k=-16 \rightarrow 16$
> $l=-29 \rightarrow 34$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0286 P)^{2}\right.$
$+1.4529 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.52 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.10$ e \AA^{-3}
Absolute structure: Flack (1983),
2149 Friedel pairs
Flack parameter $=-0.02(3)$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Pd1-N2	$2.041(3)$	Pd1-N1	$2.056(3)$
Pd1-N4	$2.044(3)$	Pd1-N3	$2.059(3)$
N2-Pd1-N4	$177.17(11)$	$\mathrm{N} 2-\mathrm{Pd} 1-\mathrm{N} 3$	$96.33(12)$
N2-Pd1-N1	$83.80(12)$	$\mathrm{N} 4-\mathrm{Pd} 1-\mathrm{N} 3$	$83.80(12)$
$\mathrm{N} 4-\mathrm{Pd} 1-\mathrm{N} 1$	$96.36(12)$	$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{N} 3$	$174.09(12)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.92	2.35	$3.225(3)$	159
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.92	2.07	$2.949(4)$	160
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{Cl} 2^{\mathrm{iii}}$	0.92	2.37	$3.240(3)$	158
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{Cl} 2$	0.92	2.36	$3.22(3)$	156
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1$	0.84	2.31	$3.127(3)$	166
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 1$	0.84	2.37	$3.205(4)$	176
$\mathrm{O}^{\mathrm{iv}}-\mathrm{H} 3 \cdots \mathrm{C} 2^{\mathrm{iv}}$	0.84	2.40	$3.146(8)$	148
$\mathrm{O}^{\prime}-\mathrm{H} 3^{\prime} \cdots \mathrm{Cl}^{\mathrm{iv}}$	0.84	2.50	$3.224(8)$	145

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $2-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $x-\frac{1}{2}, \frac{3}{2}-y,-z$; (iv) $x, y, 1+z$.

All H atoms were placed at calculated positions and made to ride during subsequent refinement, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C}$ or N$)$, where x $=1.5$ for the methyl groups of the $\left[\operatorname{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{~N}_{2}\right)_{2}\right]^{2+}$ cation and $x=1.2$ for others. H atoms of the - OH groups of the methanol molecules were also placed in calculated positions, to give the best hydrogenbonding interactions. One methanol molecule was found to be disordered and was modelled with fixed 50% occupancy factors for each position. C and O atoms of this disordered methanol molecule were refined with a common isotropic displacement parameter. The last difference Fourier map synthesis showed a residual electron density with the highest peak located at $1.43 \AA$ from $\mathrm{H} 1 B$, and the deepest hole located at $0.84 \AA$ from Pd1.

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the EPSRC for a studentship to MDJ and for their general financial support, and ICI and the Newton Trust for financial support. We are also grateful to the Portuguese Foundation for Science and Technology (FCT) for financial support through PhD scholarship No. SFRH/BD/3024/2000 for FAAP.

References

Albinati, A., Kunz, R., Ammann, C. \& Pregosin, P. S. (1991). Organometallics, 10, 1800-1806.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Blessing, R. H. (1995). Acta Cryst. A51, 33-58.
Bruno, G., Lanza, S., Nicolo, F., Tresoldi, G. \& Rosace, G. (2002). Acta Cryst. C58, m316-m318.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Fache, F., Schultz, E., Tommasino, M. L. \& Lemaire, M. (2000). Chem. Rev. 100, 2159-2231.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jones, M. D., Almeida Paz, F. A., Davies, J. E. \& Johnson, B. F. G. (2003a). Acta Cryst. E59, m6-m7.
Jones, M. D., Almeida Paz, F. A., Davies, J. E. \& Johnson, B. F. G. (2003b). Acta Cryst. E59, m105-m107.
Jones, M. D., Raja, R., Thomas, J. M., Johnson, B. F. G., Lewis, D. W., Rouzaud, J. \& Harris, K. D. M. (2003). Angew. Chem. Int. Ed. 42, 4326-4331.

Newman, P. D., Hursthouse, M. B. \& Malik, K. M. A. (1999). J. Chem. Soc. Dalton Trans. pp. 599-606.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Noyori, R. (2002). Angew. Chem. Int. Ed. 41, 2008-2022.

metal-organic papers

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Tommasino, M. L., Thomazeau, C., Touchard, F. \& Lemaire, M. (1999). Tetrahedron. Asymm. 10, 1813-1819.

Rouzaud, J., Jones, M. D., Raja, R., Johnson, B. F. G., Thomas, J. M. \& Duer, M. J. (2003). Helv. Chim. Acta, 86, 1753-1759.

Satake, A., Koshino, H. \& Nakata, T. (1999). Organometallics, 18, 5108-5111. Sauthier, M., Fornies-Camer, J. F., Toupet, L. \& Reau, R. (2000). Organometallics, 19, 553-562.

